Optimizing BOINC project databases

Oliver Bock

Max Planck Institute for Gravitational Physics
Hannover, Germany

5th Pan-Galactic BOINC Workshop

Catalan Academy of Letters, Sciences and Humanities
Barcelona, October 22nd, 2009

Outline

Introduction

o Einstein@Home

@ Search for gravitational waves
(LIGO data)

@ Search for radio pulsars in
tight binary systems
(Arecibo Observatory data)

@ See talk by Benjamin Knispel
for details!

e Facts & Figures (10/2009):
@ Users: 476,000 (225,000)

Hosts: 1,885,000 (1,020,000)

Workunits: 727,000

Tasks: 1,550,000

Database: 36.5 GB (data+idx)

@ Focusing on MySQL

Einstein@Home

Figure: Einstein@Home Screensaver

@ Configuration
© Indexing
© Replication

Q@ Tips & Tricks

Configuration

Hardware

Use a dedicated database server if possible
Focus on memory size first
Use 64-bit system to avoid memory constraints

Keep in mind that you might need to upgrade memory

in the medium term

@ Multiprocessing does pay off for BOINC projects

e Parallelizing queries often involves too much overhead...

o ... but BOINC projects run a number of threads in parallel

@ Use RAID volumes to maximize disk performance

Configuration

Software

MySQL shouldn’t use more than 80% of your system memory

(use ps to check on Unix)

Make sure that there’s no unnecessary swapping (use vmstat to check on Unix)
Use raw devices instead of regular files for MySQL's data storage

Separate MySQL's data storage from its log files (transaction/binary, InnoDB)
Check 1/0 performance and disk utilization using iostat on Unix

N © 0 0 0

Important MySQL settings (general):
sort_buffer_size

join_buffer_size

query_cache_size

query_cache_limit

table_cache

tmp-table_size

thread_concurrency (rule of thumb: 2ncpy)
thread_stack

Ve Important MySQL settings (InnoDB):
innodb_buffer_pool_size (10-15% bigger than database size)
innodb_additional mem_pool_size

innodb_log buffer_size

innodb_log file_size (roughly 25% of the buffer pool size)
innodb_thread_concurrency

V" Important MySQL settings (MylSAM):
@ key buffer_size (less than 30% of RAM)
@ nyisam_sort_buffer_size
@ read buffer_size

Indexing

Analyzing table indexes

Where to look:
e BOINC standard schema: db/constraints.sql
@ Your actual database: SHOW INDEX FROM <table>

Identified problems:
@ Missing indexes
SQL statements use columns without index in their WHERE clauses

@ Index redundancy
Columns are indexed by more than one index
(affects index maintenance efficiency)

@ Index column order
Reorder combined indexes to cover more columns with less overhead

(focus on leftmost column)

Indexing

Example: workunit (before)

Non_unique [Key_name [Seq_in_index [Column_name [Cardinality [

0 | PRIMARY 1| id 706229
0 | name 1 | name 706229
1 | wu_val 1 | appid 19
1 | wu_val 2 | need_validate 19
1 | wu_timeout 1 | transition_time 353114
1 | wu_assim 1 | appid 19
1 | wu_assim 2 | assimilate_state 19
1 | wu_filedel 1 | file_delete_state 19

Table: Original indexes of workunit table

Indexing

Example: workunit (before)

Non_unique [Key_name [Seq_in_index [Column_name [Cardinality [

0 | PRIMARY 1| id 706229
0 | name 1 | name 706229
1 | wu_val 1 | appid 19
1 | wu_val 2 | need_validate 19
1 | wu_timeout 1 | transition_time 353114
1 | wu_assim 1 | appid 19
1 | wu_assim 2 | assimilate_state 19
1 | wu_filedel 1 | file_delete_state 19

Table: Original indexes of workunit table

Indexing

Example: workunit (after)

Non_unique | Key_name \ Seq_in_index \ Column_name \ Cardinality
0 | PRIMARY 1| id 706229
0 | name 1 | name 706229
1 19
1 19
1 | wu_timeout 1 | transition_time 353114
1 19
1 19
1 | wu_filedel 1 | file_delete_state 19
1 | wu_cano_resid 1 | canonical_resultid 706229
1 | wu_modtime 1 | mod_time 706229
1 16

Table: Optimized indexes of workunit table

Indexing

Analyzing SQL statements

Use EXPLAIN [EXTENDED] to display the optimizer's query execution plan:

mysql> EXPLAIN select * from result where appid=8 and validate_state=1;

| id | select_type | table | possible_keys | key | rows | Extra |

| 1 | SIMPLE | result | res_app_state,res_val_userid | res_app_state | 1043776 | Using where |

1 row in set (0.00 sec)

Figure: Execution plan of a simple query (output truncated)

mysql> EXPLAIN select * from result where validate_state=1 and appid=8;

| id | select_type | table | possible_keys | key | rows | Extra |

| 1 | SIMPLE | result | res_app_state,res_val_userid | res_app_state | 997152 | Using where

1 row in set (0.00 sec)

Figure: Execution plan of a simple query (reverse column order) .

Replication

Replication

Why use replication?

v_ Easy to set up

v Provides online backup (almost real-time)
v Allows to create offline backups (dump) without service interruption
v_ Allows costly data analysis without performance impact

V' Separation of read-only guest access from production database
v

What's required?

@ Separate database server (slave)
If affordable with similar hardware specs as production server (master)

@ Slave uses same basic configuration as master
(less memory ok, depends on use cases)

@ Network connection (fault-tolerant, VPN networks are fine)

Replication

Prepare "master"

@ Additional my.cnf settings:
@ Set server to master:
server-id=1
@ Activate binary log (use different storage than data):
log-bin=/var/lib/mysql/binary.log
@ Binary log expiration:
expire-logs-days=14
@ Ensure binary log consistency (check /O load):
sync_binlog=1
@ Add dedicated replication user:
GRANT REPLICATION SLAVE ON *.x TO ’replicator’@’<SLAVE-IP>’ IDENTIFIED BY
» <REPLICATOR-PASSWORD> ;

© Activate granted privileges:
FLUSH PRIVILEGES;

@ Create dump of production database:
mysqldump --opt --master-data=2 -F -p <database> dump.sql

Replication

Prepare "slave"

@ Additional my.cnf settings:

@ Set server to slave:
server-id=2

@ Set database to replicate:
replicate-wild-do-table=<database>.}

@ Add replication log (use different storage than data):
relay-log = /var/lib/mysql/replication-relay.log
relay-log-info-file = /var/lib/mysql/replication-relay-log.info
relay-log-index = /var/lib/mysql/replication-relay-log.index

@ Add binary log settings as found on master

@ Start MySQL without slave thread:
mysqld --skip-slave-start

© Restore production database from dump (assuming <database> exists):
mysql -p <database> < dump.sql

@ Extract master log file and position (see next step) from dump:
fgrep -m1 "CHANGE MASTER T0" dump.sql

@ Attach slave to master and synchronize them:
CHANGE MASTER TO MASTER-HOST=’<MASTER-IP>’, MASTER.USER=’replicator’,
MASTER_PASSWORD=’<REPLICATOR-PASSWORD>’, MASTER_PORT=3306,
MASTER_LOG_FILE=’<MASTER-LOG-FILE>’, MASTER_LOG_POS=<MASTER-LOG-POSITION>;

@ Start the slave thread:
START SLAVE;

Tips & Tricks

Maintenance

ANALYZE TABLE

e Update index key distributions (InnoDB and MyISAM)
@ Run once a day (e.g. right after daily backup dump)

o Tables will be locked during optimization
(MyISAM: read-lock, InnoDB: write-lock)!

@ Operation will be replicated to slaves unless told otherwise

o’

OPTIMIZE TABLE

@ Defragment data, recover space and update index statistics
(InnoDB and MyISAM)

@ Run once a month (e.g. right after daily backup dump)

@ Tables will be locked entirely during optimization!

@ Operation will be replicated to slaves unless told otherwise ﬁ

Slow query log (offline analysis):
@ long _query_time

@ log_slow_queries
(superceeded by --slow_query_log option)

@ Default log file: host_name-slow.log

Free and Open Source (online analysis):
o Classic: mytop

@ Recommended: innotop

Commercial (online analysis):
e MySQL " Enterprise Monitor”
@ Quest Software " Spotlight on MySQL"

Tips & Tricks

Tips & Tricks

Further reading

Literature:
@ Schwartz, Zaitsev, Tkachenko, Zawodny, Lentz and Balling:
"High Performance MySQL: Optimization, Backups,
Replication, and more” (O'Reilly Media, 2008)

Web:
e MySQL Reference Manual:
http://dev.mysql.com/doc/refman/5.0/en
e MySQL Performance Blog:
http://www.mysqlperformanceblog.com

@ Debian MySQL example configurations:
http://packages.debian.org/lenny/amd64/
mysql-server-5.0/filelist

http://dev.mysql.com/doc/refman/5.0/en
http://www.mysqlperformanceblog.com
http://packages.debian.org/lenny/amd64/mysql-server-5.0/filelist
http://packages.debian.org/lenny/amd64/mysql-server-5.0/filelist

Conclusion

Conclusion

@ Use a dedicated database server if possible
@ Focus on memory first, then number of CPUs
o Configure your database to match your hardware

@ Watch out for long running SQL statements
(innotop, MySQL Slow Query Log)

Analyze indexing situation (SHOW INDEX)
Optimize indexes and SQL statements (EXPLAIN)
Avoid FORCE INDEX in source codel!

Use database replication (ad-hoc queries, backups)

As always: create periodic (daily!) backups

Conclusion

Thank you for your attention!

Any questions?

	Outline
	Configuration
	Indexing
	Replication
	Tips & Tricks
	Conclusion

